metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cornelis Lensink, Graeme J. Gainsford* and Camila F. Hosie

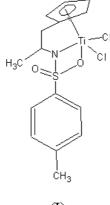
Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

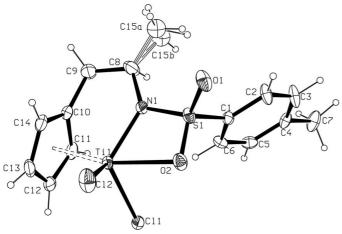
Key indicators

Single-crystal X-ray study T = 168 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ Disorder in main residue R factor = 0.056 wR factor = 0.132 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Dichloro{ η^5 : η^1 -[2-(*p*-tolylsulfonamido)prop-1-yl]cyclopentadienyl}titanium

The title compound, $[TiCl_2(C_{15}H_{17}NO_2S)]$, has a five-coordinate titanium bonded to the N and one O atom of the sulfonamide tethered by a substituted two-carbon chain to a bound cyclopentadiene (assumed to occupy one position), and two Cl atoms. The Ti-N,O(sulfonamide) bond lengths are 1.994 (3) and 2.334 (3) Å, respectively. The Ti-O bond passes through one face of the approximate tetrahedron formed by the other four bonds.


Received 17 May 2001 Accepted 30 May 2001 Online 15 June 2001

Comment

The title compound, (I), is related to previously reported structures (Lensink, 1998; Lensink, Gainsford & Baxter, 2001; Lensink, Gainsford & Brandsma, 2001). The crystal structure consists of independent molecules (Fig. 1) of both enantantiomorphs to make a racemic crystal with one significant intermolecular contact: C11-H11...Cl2i is 2.80 Å for symmetry operation $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$. The titanium has fivefold coordination through the N and one O atom of the sulfonamide, a cyclopentadiene (assumed to occupy one coordination site) linked via an ethyl linkage to the nitrogen, and two Cl atoms. The S–O bonds [O1: 1.439 (3) Å; O2: 1.471 (3) Å] confirm the significant bonding of O2 to titanium; the Ti $-C_g$ distance is 2.04 Å and lies within the narrow range 2.01-2.08 Å observed previously (Lensink, Gainsford & Baxter, 2001; Lensink, Gainsford & Brandsma, 2001; Allen & Kennard, 1993). The titanium coordination can best be described as being based on a tetrahedron formed by the cyclopentadiene, and the Cl1, Cl2 and N1 atoms with the Ti-O2 bond passing through the face formed by N1, Cl1 and Cl2; the angles subtended by O2 at the titanium to these three atoms are 64.50 (13), 79.65 (10) and 80.10 (9)°, respectively.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I) (Johnson, 1976; Farrugia, 1997). Displacement ellipsoids are drawn at the 20% probability level with the disordered methyl C atoms shown with three line bonds. H atoms (unlabelled) have arbitrary radii.

Experimental

The title compound was prepared from the stoichiometric reaction of $Ti(NMe_2)_4$ with *N*-(2-*p*-tolylsulfonamido-propyl)-cyclopentadiene followed by treatment with excess Me₃SiCl. Crystals were obtained from dichloromethane/pentane. Details and spectroscopic data will be reported in a future publication.

Crystal data

$[TiCl_2(C_{15}H_{17}NO_2S)]$	$D_x = 1.509 \text{ Mg m}^{-3}$
$M_r = 394.16$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 1024
a = 10.874 (4) Å	reflections
b = 13.517(5) Å	$\theta = 3.1-25.9^{\circ}$
c = 12.057 (4) Å	$\mu = 0.93 \text{ mm}^{-1}$
$\beta = 101.717 \ (5)^{\circ}$	T = 168 (2) K
$V = 1735.4 (10) \text{ Å}^3$	Block, yellow
Z = 4	$0.50 \times 0.44 \times 0.12 \text{ mm}$

Data collection

CCD area-detector diffractometer	2182 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.078$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.3^{\circ}$
(Blessing, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.710, \ T_{\max} = 0.895$	$k = -16 \rightarrow 16$
21 781 measured reflections	$l = -14 \rightarrow 15$
3504 independent reflections	

 $(0.0443P)^2$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2)]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 3.0084P
$wR(F^2) = 0.132$	where $P = ($
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.0$
3504 reflections	$\Delta \rho_{\rm max} = 0.52 \ {\rm e}$
201 parameters	$\Delta \rho_{\min} = -0.41$
H-atom parameters constrained	

Table 1Selected geometric parameters (Å, °).

$\begin{array}{c} 1.439 (3) \\ 1.471 (3) \\ 1.608 (3) \\ 1.759 (4) \\ 1.439 (16) \\ 1.456 (7) \end{array}$
1.608 (3) 1.759 (4) 1.439 (16)
1.759 (4) 1.439 (16)
1.439 (16)
1.456 (7)
1.472 (12)
1.497 (7)
115.8 (2)
98.12 (18)
107.10 (19)
93.78 (15)
127.2 (8)
117.9 (7)
112.4 (4)
-21.5(11)
) -155.8 (10)
86.2 (7)

Atom C15 was disordered over two sites (A and B) with final occupancies 0.589:411 (17). All H atoms except those on methyl C atoms and C8 were constrained to an isotropic displacement parameter 1.2 times that of the equivalent U of their parent atom. This factor was 1.5 times for the other H atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996) and *SADABS* (Sheldrick, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) based on *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *CIFTAB* (Sheldrick, 1997).

We wish to thank Drs J. Wikaira and C. Richardson, University of Canterbury, for their assistance.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lensink, C. (1998). J. Organomet. Chem. 553, 387-392.
- Lensink, C., Gainsford, G. J. & Baxter, N. I. (2001). Acta Cryst. C57, 366–367. Lensink, C., Gainsford, G. J. & Brandsma, M. (2001). Acta Cryst. E57, m211–
- 212.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXL*97, *SHELXS*97 and *CIFTAB*. University of Göttingen, Germany.
- Siemens (1996). *SMART* and *SAINT*. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.